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Abstract A typical way to increase the performance

of a parallel program on a given parallel platform is

to try to overlap computation and communication in

order to decrease running time and simultaneously in-

crease efficiency (speedup). This approach, however,

leads to diminishing returns after an initial and time-

consuming development phase. We propose an alter-

native approach to program development and resource

utilization in a parallel machine. Rather than increas-

ing the complexity of a single program, we attempt to

overlap the execution of two or more parallel jobs on

the same machine. Though this approach is not new,

we think that the adoption of one-sided communication

in program development and global scheduling strate-

gies can pave the way to a new methodology of devel-

oping parallel programs that are simpler and can use

more efficiently a wide range of parallel machines and

distributed systems. This methodology is based on three

innovative techniques: communication buffering, strob-

ing, and non-blocking, one-sided communication. By

leveraging these techniques, we can perform effective

optimizations based on the status of the parallel ma-

chine rather than on the limited knowledge available

locally to each processor.

Keywords: parallel job scheduling, communication li-

braries, run-time support, operating systems.

1 Introduction

The scheduling of parallel jobs has long been an
active area of research [3]. It is a challenging prob-
lem because the performance and applicability of
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parallel scheduling algorithms is highly dependen-
t upon factors at different levels: the workload,
the parallel programming language, the operating
system (OS), and the machine architecture.

Time-sharing scheduling algorithms are partic-
ularly attractive because they can provide good
response time without migration or predictions on
the execution time of the parallel jobs. However,
time-sharing has the drawback that communicat-
ing processes must be scheduled simultaneously to
achieve good performance. With respect to perfor-
mance, this is a critical problem because the soft-
ware communication overhead and the schedul-
ing overhead to wake up a sleeping process domi-
nate the communication time on most parallel ma-
chines [8].

Over the years, researchers have developed par-
allel scheduling algorithms that can be loosely or-
ganized into three main classes, according to the
degree of coordination between processors: explic-
it coscheduling, local scheduling and implicit or dy-
namic coscheduling .

On the one end of the spectrum, explicit
coscheduling [2] ensures that the scheduling of
communicating jobs is coordinated by construct-
ing a static global list of the order in which job-
s should be scheduled. A simultaneous context-
switch is then required across all processors.
Unfortunately, these straightforward implemen-
tations are neither scalable nor reliable. Fur-
thermore, explicit coscheduling requires that the
schedule of communicating processes be precom-
puted, which complicates the coscheduling of
client-server applications and requires pessimistic
assumptions about which processes communicate
with one another. Finally, explicit coscheduling of



parallel jobs interacts poorly with interactive jobs
and jobs performing I/O [9].

At the other end of the spectrum is local
scheduling, where each processor independently
schedules its processes. This is an attractive
time-sharing option due to its ease of construc-
tion. However, the performance of fine-grained
communication jobs can be orders of magnitude
worse than with explicit coscheduling because the
scheduling is not coordinated across processors [5].

An intermediate approach developed at UC
Berkeley and MIT in recent years is implicit
or dynamic coscheduling [1, 15]. With implic-
it coscheduling, each local scheduler makes in-
dependent decisions that dynamically coordinate
the scheduling actions of cooperating processes
across processors. These actions are based on local
events that occur naturally within communicating
applications. For example, on message arrival, a
processor speculatively assumes that the sender is
active and will probably send more messages in the
near future. The implicit information available
for implicit coscheduling consists of two inherent
events: response time and message arrival [1].

The main drawbacks of implicit coscheduling
include (1) the potential inefficiency with jobs dis-
playing fine-grained communication, (2) the lim-
ited programming model supported, (3) the limi-
tation of a localized flow-control strategy, (4) the
non-trivial implementation of fault tolerance, and
(5) the lack of a reliable performance model of the
execution time of parallel jobs, due to the dynam-
ic interleaving of several jobs. We elaborate on a
few of these drawbacks below.

To address the above limitations, we present a
new methodology to schedule parallel jobs. This
methodology conjugates the positive aspects of
explicit and implicit coscheduling using three in-
novative techniques: communication buffering to
amortize communication overhead; strobing to
globally exchange information at regular interval-
s; and non-blocking, one-sided communication to
decouple communication and synchronization. By
leveraging these techniques, we can perform effec-
tive optimizations based on the status of the paral-
lel machine rather than on the limited knowledge
available locally to each processor.

The benefits of the proposed methodology in-
clude higher resource utilization, reduced com-
munication overhead, efficient implementation of
flow-control strategies and fault-tolerant protocol-

s, accurate performance modeling, and a simpli-
fied yet still expressive parallel programming mod-
el (a la CISC→RISC instruction-set simplifica-
tion).

The rest of the paper is organized as fol-
lows. Section 2 characterizes important proper-
ties which are shared by many scientific applica-
tions, e.g., resource utilization and communication
access patterns, and which inspired our proposed
methodology. The methodology itself is described
in Section 3, some preliminary results are present-
ed in Section 4 and some concluding remarks are
given in Section 5.

2 Resource Utilization of Paral-

lel Programs

In Figure 1, we show the global processor and net-
work utilization (i.e., the number of active proces-
sors and the fraction of active links) during the
execution of a transpose FFT algorithm on a par-
allel machine with 256 processors. These proces-
sors are connected with an indirect interconnec-
tion network using state-of-the-art routers [13].
Based on these figures, there is obviously an un-
even and inefficient use of system resources. Dur-
ing the two computational phases of the transpose,
the network is idle. Conversely, when the net-
work is actively transmitting messages, the pro-
cessors are not doing any useful work. These
characteristics are shared by many SPMD pro-
grams, including Accelerated Strategic Comput-
ing Initiative (ASCI) application codes such as
Sweep3D [6]. Hence, there is tremendous poten-
tial for increasing resource utilization in a parallel
machine.

Another important characteristic shared by
many scientific parallel programs is their access
pattern to the network. The vast majority of sci-
entific applications display bursty communication
patterns with alternating spikes of impulsive com-
munication with periods of inactivity.

In Figure 2, we show the network utilization by
running four distinct scientific applications over a
parallel machine with 256 processors [10]. In all
four cases, we can identify communication holes,
i.e., periods of network inactivity, in the net-
work. Therefore, there exists a significant amount
of communication bandwidth which can be made
available for other purposes.
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Figure 1: Resource Utilization in a Transpose FFT Algorithm.

3 Multitasking Parallel Jobs

In order to improve the resource utilization of par-
allel programs, we propose to multitask parallel
jobs. That is, instead of overlapping computa-
tion with communication and I/O within a single
parallel program, all the communication and I/O
which arises from a set of parallel programs can
be overlapped with the computations in those pro-
grams.

We propose three techniques to implement the
multitasking of parallel jobs. (1) The commu-
nication generated by each processor is buffered
and performed at the end of regular intervals (or
time-slices) in order to amortize the communica-
tion and scheduling overhead. By delaying the
communication, we allow for the global schedul-
ing of the communication pattern. (2) A strobing
mechanism performs a total exchange of informa-
tion at the end of each time-slice so that multi-
processor machines may move away from isolat-
ed scheduling algorithms [1, 15] (where processors
make decisions based solely on their local status
and a limited view of the remote status) to more
outward-looking or global scheduling algorithms.
(3) Finally, we propose to use non-blocking and
one-sided communication primitives to decouple
communication and synchronization in order to
schedule the communication pattern with addi-
tional degrees of freedom.

This approach represents a significant improve-
ment over existing work reported in the litera-
ture. It allows for the implementation of a global
scheduling policy, as done in explicit coschedul-
ing, while maintaining the overlapping of com-
putation and communication provided by implicit
coscheduling.

3.1 Communication Buffering

Rather than incurring communication and schedu-
ling overhead on a per-message basis, we propose
to accumulate the communication messages gener-
ated by each processor and amortize the overhead
over a set of messages. Specifically, the cost of
the system calls necessary to access the kernel da-
ta structures for communication is amortized over
a set of system calls rather than being incurred
on each individual system call. This implies that
our methodology can be tolerant to the potentially
high latencies that can be introduced in a kernel
call or in the initialization of the NIC that can
reside on a slow I/O bus. In addition to amor-
tizing communication and scheduling overhead,
we also implement zero-copy (or low-copy, if we
desire fault-tolerant communication) communica-
tion. As a result, our approach to communication
buffering can achieve performance comparable to
user-level network interfaces (i.e., OS-bypass pro-
tocols) [7].

3.2 Strobing

The uneven resource utilization and the period-
ic, bursty communication patterns generated by
many parallel scientific applications can be ad-
dressed by performing a total exchange of infor-
mation and synchronizing the processors at regu-
lar intervals with little additional cost. This pro-
vides the parallel machine with the capability of
filling in communication holes generated by paral-
lel applications.

In order to provide the above capability, we pro-
pose a strobing mechanism to support the schedul-
ing of a set of parallel jobs which share a parallel
machine. Let us assume that each parallel job
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Figure 2: Network Utilization in Scientific Parallel Programs.

runs on the entire set of p processors, i.e., jobs
are time-sharing the whole machine. The strobing
mechanism performs an optimized total-exchange
of control information and also triggers the down-
loading of any buffered packets into the network.
The strobe is implemented by designating one of
the processors as the master, the one who gener-
ates the “heartbeat” of the strobe. The generation
of heartbeats will be achieved by using a time-
out mechanism which can be associated with the
network interface card (NIC). This ensures that
strobing incurs very little CPU overhead.

On reception of the heartbeat, each processor
(excluding the master), is interrupted and down-
loads a broadcast heartbeat into network. After
downloading the heartbeat, the processor contin-
ues running the currently active job. (This ensures
computation is overlapped with communication.)
When p heartbeats arrive at a processor, the pro-
cessor will enter a strobing phase where its kernel
will download any buffered packets. Each heart-
beat contains information on which processes have
packets ready for download and which processes
are asleep waiting to upload a packet from a par-

ticular processor.
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Figure 3: Scheduling Computation and Commu-
nication. The communication accumulated before
t0 is downloaded into the network between t1 and
t2 (after the completion of the barrier synchroniza-
tion).

Figure 3 outlines how computation and commu-
nication can be scheduled over a generic processor.
At the beginning of the heartbeat, t0, the control
is given to the kernel, which downloads the con-
trol packets for the total exchange. During the
execution of the barrier synchronization, the user
process regains control of the processor, and at the
end of it, the kernel schedules the pending com-



munication accumulated before t0 to be delivered
in the next time-slice. At t1, the processor will
know the number of incoming packets that it is
going to receive in the next communication time-
slice as well as the sources of the packets and will
start the downloading of outgoing packets.

This strategy can be easily extended to deal
with space-sharing where different regions run d-
ifferent sets of programs [2]. In this case too, all
these regions are synchronized by the same heart-
beat.

The total-exchange can be properly optimized
by exploiting the low-level features of the intercon-
nection network. For example, if control packets
are given higher priority than the standard back-
ground traffic at the sending and receiving end-
points, they can be delivered with predictable la-
tency.
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Figure 4: Execution time of the total exchange
algorithm in a family of interconnection networks
with up to 1024 processing nodes.

We analyzed the execution time of the direct
total-exchange algorithm in a family of indirec-
t networks with up to 1024 processing nodes. In
this experiment, whose results are shown in Figure
4, we assume the existence of background traffic
that varies from 20% to 80% of the network capac-
ity. We can see that the execution time is large-
ly insensitive to the intensity of the background
traffic. With 64 processing nodes (the configura-
tion of a single SGI Origin 2000 cluster) the exe-
cution time is only 50 µsec and this increases to
150 µsec with 256 nodes. Due to the quadratic in-
crease of the number of messages sent during the
total-exchange, the execution time reaches 1 m-
sec with 1024 nodes, limiting the scalability of the
approach. This problem can be addressed in a

clustered architecture, like ASCI Blue Mountain,
by using a multi-phase, indirect algorithm, that in
the first phase executes the total-exchange inside
each single cluster, then performs a total-exchange
between clusters, to conclude with a final phase
internal to the clusters, giving a barrier synchro-
nization time of less than 300 µsec.

Using these basic results, we can eliminate the
transmission of the ghost packets, those that do
not contain any useful information and are sen-
t only for synchronization purposes, by adopting
the following strategy: if a control packet is not re-
ceived within the communication threshold, which
is determined by observing the maximum laten-
cy experienced by the control packets as shown
in Figure 4, we can safely assume that there is
no pending communication in the source proces-
sor and that no packets will be sent in the next
time-slice.

The global knowledge of the communication
pattern provided by the total exchange allows for
the implementation of efficient flow-control strate-
gies. For example, it is possible to avoid con-
gestion inside the network by carefully scheduling
the communication pattern and limiting the nega-
tive effects of hot spots by damping the maximum
amount of information addressed to each proces-
sor during a time-slice. This same information can
be used at the kernel level to provide fault-tolerant
communication.

3.3 Blocking vs. Non-Blocking

One of the most limiting constraints in the imple-
mentation of time-sharing algorithms is the need
to schedule simultaneously communicating pro-
cesses. This problem is exacerbated with blocking
communication, which imposes an explicit hand-
shake between sender and receiver.

We argue that this problem can eliminated, or
at least alleviated, by slightly modifying the com-
munication structure of parallel jobs and replacing
blocking communication with non-blocking prim-
itives and/or one-sided communication.

Let us consider the following example. The dy-
namics of a message-passing program can be rep-
resented as a two-dimensional graph with process-
es on the horizontal axis and time on the vertical
one, as shown in Figure 5. Arrows between pro-
cesses represent communication between a sender
and a receiver. In Figure 5(a), three processes
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exchange messages. For the sake of convenience,
let us assume that there is no dependency be-
tween the messages (i.e., they can be sent in any
order). Using a traditional, blocking, message-
passing programming style, we must define a com-
munication schedule even if one is not required,
e.g., A sends to B, B receives from A and sends
to C, C receives from B and sends to A.

With one-sided communication (or non-blo-
cking communication primitives, in general), the
actual message transmission and the synchroniza-
tion are decoupled, leaving many degrees of free-
dom to re-arrange message transmission. In Fig-
ure 5(b), the same communication pattern is de-
limited by two barriers which include the commu-
nication executed with put primitives. The com-
munication can be executed in any order, provided
that the information is delivered at the end of the
synchronization calls. Also, communicating pro-
cesses do not need to be simultaneously scheduled
to perform the communication.

3.4 Bulk-Synchronous Parallel Pro-

grams

Using our proposed strobing and buffering mecha-
nisms, any generic parallel program can be trans-
formed into a Bulk-Synchronous Parallel (BSP)
one [14]. Although the buffering and strobing
mechanisms alone improve parallel program per-
formance, transforming by themselves a parallel
program into a BSP one not only can improve
performance further but also allows for accurate
prediction of execution times of parallel program-
s.

A BSP computation consists of a sequence of
parallel supersteps. During a superstep, each pro-

cessor can perform a number of computation step-
s on values held locally at the beginning of the
superstep and can issue various remote read and
write requests that are buffered and delivered at
the end of the superstep. This implies that com-
munication is clearly separated from synchroniza-
tion, i.e. it can be performed in any order, provid-
ed that the information is delivered at the begin-
ning of the following superstep. However, while
the supersteps in the original BSP model can be
variable in length, our programming model gener-
ates computation and communication slots which
are fixed in length and are determined by the time-
slice.

One important benefit of the BSP model is the
ability to accurately predict the execution time
requirements of parallel algorithms and program-
s. This is achieved by constructing analytical for-
mulae that are parameterized by a few constants
which capture the computation, communication,
and synchronization performance of a p-processor
system. These results are based on the experimen-
tal evidence that the generic collective commu-
nication pattern generated by a superstep called
h-relation1 can be routed with predictable time
[4, 11]. This implies that the maximum amount
of information sent or received by each processor
during a communication time-slice can be stati-
cally determined and enforced at run time by a
global communication scheduling algorithm.

4 Preliminary Results

Our preliminary results include a working imple-
mentation of a subset of MPI-2, which includes
all the communication primitives used by the AS-
CI applications plus basic primitives to implement
one-sided communication. This implementation is
used to test our presented methodology.

The experimental results obtained by running
two or more instances of the ASCI code Sweep3D
show that is possible to overlap virtually all the
computation of one parallel job with the commu-
nication of another parallel job. We have also seen
that by using time-slices of 100 msec (or larger)
it is possible to hide all the overhead generated
by the strobing and scheduling algorithms. The
experimental evaluation uses a detailed (register-

1
h denotes the maximum amount of information sent or

received by any process during the superstep.



level) simulation model [12] and will be shortly
followed by an implementation on a Linux clus-
ter.

5 Conclusion

In this paper, we have present a new methodology
to multitask parallel jobs in a message-passing en-
vironment and to develop parallel programs that
can pave the way to the efficient implementation
of a distributed operating system. This methodol-
ogy is based on three innovative techniques: com-
munication buffering, strobing, and non-blocking,
one-sided communication. By leveraging these
techniques, we can perform effective optimizations
based on the status of the parallel machine rather
than on the limited knowledge available locally to
each processor.

The advantages of the proposed methodology
include higher resource utilization, reduced com-
munication overhead, efficient implementation of
flow-control strategies and fault-tolerant protocol-
s, accurate performance modeling, and a simpli-
fied yet still expressive parallel programming mod-
el.
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